
Valmet DNA Engineering

Automation Language

Collection 2017 rev. 3

G5095_EN_03

Automation Languageii

Collection 2017 rev. 3

Valmet Automation Inc. reserves the right to make changes in information contained in this publication without prior
notice, and the customer should in all cases consult Valmet Automation Inc. to determine whether any such changes
have been made. This publication may not be reproduced and is intended for the exclusive use of Valmet Automation
Inc.’s customer.

The terms and conditions governing the sale of hardware products and the licensing and use of software products man-
ufactured/delivered by Valmet Automation Inc. consist solely of those set forth in the written contract between the
Valmet Automation Inc. and its customer. No statement contained in this publication, including statements regarding
capacity, suitability for use, or performance of products, shall be considered a warranty for any purpose nor shall it be
considered part of the contract or give rise to any liability of Valmet Automation Inc..

In no event will Valmet Automation Inc. be liable for any damages, including but not limited to incidental, indirect,
special, or consequential damages (including lost profits), arising out of or relating to this publication or the informa-
tion contained in it, even if Valmet Automation Inc. has been advised, knew, or should have known of the possibility of
such damages.

Software

The content of the software described in the documentation (“Valmet Software”) is subject to the copyright of Valmet
Automation Inc. and/or its affiliates, subsidiaries (whether direct or indirect), third−party licensors (hereinafter col-
lectively and, if the context so requires, severally referred to as “Valmet”).

Valmet Software is subject to Valmet’s license agreement. Valmet prohibits the use of this software unless you have
valid license agreement with Valmet. By taking Valmet Software into use, you signify your acceptance of the said
license agreement.

Valmet Software may include certain open source or other software originated from third parties subject to the GNU
General Public License (GPL), GNU Library/Lesser General Public License (LGPL) and other additional copyright
licenses, disclaimers and notices. The exact terms of GPL, LGPL and certain other licenses are provided to you with
Valmet Software. Please refer to the exact terms of the GPL, LGPL and other licenses regarding your rights under said
licenses.

Valmet will provide copies of certain open source software to you on a CD−ROM for a fee covering the costs of such
distribution (media, shipping and handling) upon a written request to Valmet’s address below (Subject: Source code
requests). This offer is valid for a period of 3 years from the date of distribution of Valmet Software.

In accordance with the provisions of the public licenses, all contributors (as defined in the public licenses), with re-
spect to the open source software, hereby DISCLAIM (i) ALL WARRANTIES AND CONDITIONS, express and im-
plied, including warranties or conditions of title and non−infringement, and implied warranties or conditions of
MERCHANTABILITY and FITNESS FOR A PARTICULAR PURPOSE, and (ii) all liability for damages, including
direct, indirect, special, incidental and consequential damages, such as lost profits. You hereby accept and agree to the
foregoing disclaimers.

The name ”Valmet”, Valmet’s product names and the Valmet logo are proprietary trademarks of Valmet. Any other
trademarks, product names, company names and logos are the property of their respective owners.

Valmet Automation Inc.

� 2017 Valmet Automation Inc.
All rights reserved.

Valmet Automation Inc.
P.O. Box 237, FIN−33101 Tampere, Finland

Tel. +358 (0)10 672 0000
www.valmet.com/automation

Valmet DNA iii

 Collection 2017 rev. 3

Document History

Date Revision Comment

13.10.2017 3 Valmet DNA Collection 2017

No changes in contents.

16.08.2016 2 Valmet DNA Collection 2016

No changes in contents.

29.09.2015 1 Valmet DNA Collection 2015

No changes in contents.

Automation Languageiv

Collection 2017 rev. 3

Valmet DNA v

 Collection 2017 rev. 3

Contents

1 Introduction 1. .

2 Automation Application 2. .

3 Concepts of the Automation Language 4. .

3.1 Modules 4. .

3.1.1 Automation Modules 4. .

3.2 Document Modules 6. .

3.3 Configuration Modules 6. .

3.4 Type Modules i.e. Types 7. .

3.4.1 Data Types 7. .

3.4.2 Function Block Types i.e. Function Blocks 11.

3.4.3 Bundle Types 12. .

4 Application Program Elements 13. .

4.1 Data Points 13. .

4.1.1 Local Data Points 13. .

4.1.2 External Data Points 14. .

4.2 Ports 15. .

4.2.1 Direct Access Port 15. .

4.2.2 Interface Port 17. .

4.3 Function Blocks 17. .

4.3.1 Configuration Parameters 19. .

4.3.2 Connection Parameters 19. .

5 Application Program Written in the Automation Language 22.

5.1 The Structure of an Automation Module 22. .

5.2 The Structure of a Configuration Module 24. .

5.2.1 Administration Part 24. .

5.2.2 Representation Part 26. .

5.2.3 Functional Part 35. .

5.3 Internal Connections in a Module 42. .

Automation Languagevi

Collection 2017 rev. 3

5.4 Communication Between Modules 46. .

5.4.1 Using a Direct Access Port in Communication 47.

5.4.2 Using an Interface Port in Communication 49.

5.4.3 Using a Viewpoint in Communications 50.

5.5 An Example of the Structure, Connections and Communications of
a Configuration Module 51. .

6 The Automation Language’s Naming Conventions 55. .

6.1 General 55. .

6.2 Structure and Length of Module Name 55. .

6.3 Characters That Can Be Used in Module Name 55.

6.4 Directory Identifier in Module Name 56. .

6.4.1 Automation Modules 56. .

6.4.2 Configuration Modules 56. .

6.5 Control Room Identifier in Module Name 58. .

6.6 Tag Part in Module Name 58. .

6.7 Designation of Display Modules 59. .

6.8 Designation of System Modules 59. .

6.9 Designation of Modules Produced by Operation Server 60.

6.9.1 Designation of History Modules 60. .

6.9.2 Designation of Base Modules 61. .

6.10 Modules by Tools 61. .

6.11 Module Destination Data 63. .

6.11.1 Structure of the Destination Data 63. .

7 Fault Bit Conventions 64. .

7.1 Meanings of Fault Bits 64. .

7.2 What Different Fault Bits Indicate 64. .

7.2.1 ext − External Fault 65. .

7.2.2 ovf − Data Overflow 65. .

7.2.3 dis − Control Disabled 65. .

7.2.4 inv − Invalid Data 65. .

7.2.5 old − Old Data 66. .

7.2.6 der − Fault on Derived Data 66. .

7.2.7 sex − Source Exceptional 66. .

Valmet DNA vii

 Collection 2017 rev. 3

7.3 Signal Alarms from Fault Bits 66. .

7.4 Some Notes to Be Noted in Using Fault Bits 66. .

7.5 On Applying Fault Bit Conventions 67. .

7.5.1 Initial Values of Types 67. .

7.5.2 Initial Values in Modules 67. .

7.5.3 Data to Be Connected 67. .

Appendix 1 Primitive Types

Appendix 2 Common Structured Types

Automation Languageviii

Collection 2017 rev. 3

Introduction 1

Rev. 3

1 Introduction

This document has been written for the application engineer of Valmet DNA.

The document describes the basic concepts of the automation language and the structure of
an application program configured in the automation language. In addition, it discusses the
different features that support the user of the automation language, as well as the different
formats of automation−language program modules in Valmet DNA.

Automation language is used to define the operation of Valmet DNA, in other words, to confi-
gure its application software. It is a connection type language based on function blocks and
versatile types, and it can be extended, for instance, with expressions for calculations, logic
operations and comparisons, and with a list−form representation of graphics.

The purpose of the automation language is to create a clear and logical model of Valmet DNA
and its configuration data for the application designer. Owing to its limited range of applica-
tions, the language is able to give extensive support to the user. It provides a considerably
higher efficiency in automation design than general purpose programming languages (such
as C).

Special design software packages provide an effective user interface for the application de-
signer. They support the application designer, for example, by offering tools for graphic
design.

2 Automation Language

Rev. 3

2 Automation Application

The automation application i.e. automation software consists of automation language mod-
ules (Figure 1).

ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ
ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ

I/O modules

Control room

ÈÈÈÈ
ÈÈÈÈ

ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈ
ÈÈÈÈProcess

Application
program
written in the
automation
language

Control room
modules

Function
modules

Figure 1 Automation−language application program

Automation Application 3

Rev. 3

From the application enginener’s point of view and in terms of process control, the module is
a logical unit. Modules are the smallest program blocks that can be downloaded separately to
the application servers.

A module can be an individual control or measurement loop, an entire sequence control pro-
gram, a motor group control program or a display shown on the monitor screen.

The concepts of the automation language give the engineer a model of Valmet DNA and its
configuration as shown in the following picture (Figure 2).

Process control server Operation server

Types Types
Function
modules

I/O
modules

Types
Function
modules

I/O
modules

Picture
module

Picture
module

Network

Process control server

Figure 2 A designer’s view of Valmet DNA

The engineer perceives activities and components in Valmet DNA, to which he places the
modules he has built. Modules are made of different parts, which are defined by types. The
application server type components always contain standard library type modules. The mod-
ules communicate with each other by copying required data and together constitute the auto-
mation application.

The modular structure of the automation language supports the engineer by enabling the use
of defaults and previously configured blocks. However, the defaults are treated as defaults
only at the engineering workstation; once the data is transferred to the application servers,
there is no way for you to tell if it is a default or a value entered by the engineer.

4 Automation Language

Rev. 3

3 Concepts of the Automation Language

3.1 Modules

Since the use of the automation language involves the handling of many different types of
data, we have created specific concepts for each of them. The fundamental elements of the
automation language include different modules. The modules are further divided to four
main groups.

The basic concepts of the automation language are as follows:

� automation modules

� document modules

� configuration modules

� type modules i.e. types

3.1.1 Automation Modules

The user interface for the application engineer makes use of graphic utilities, which make the
design more illustrative. Pictures produced with these graphic design tools are converted to
an automation language program i.e. configuration modules, that can be downloaded to the
Valmet DNA application servers. The pictures produced with the graphic tools are called au-
tomation modules.

An automation module is a graphic representation of a part of an application program. A
graphic representation of a module can be returned to a list form (automation language), but
not vice versa. In other words, it is not possible to convert a program listing to a graphic mo-
dule.

The automation modules may contain a number of configuration modules. Nearly all
modules related to a specific loop can be integrated in a single graphic automation module.

Automation modules can be designed using versatile design and editing functions and li-
braries containing symbols needed in automation modules.

The following figure (Figure 3) shows an example of an automation module. The automation
module shown in this example will be converted to the following process control server and
control room configuration modules:

� process control server function module

� process control server input and output modules

� control room tag module

� control room event module

� control room operation display module

Concepts of the Automation Language 5

Rev. 3

AUTOMATION MODULE

Name: pr:LICA−369.F
Type: function

Name:
Type:

od:A1:LICA−369
operating

Name:
Type:

pr:LICA−369.I
io

Name:
Type:

al:A1:LICA−369.F
event

Name:
Type:

ce:A1:LICA−369
tag

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Process control server’s Control room’s
configuration modules configuration modules

Name: pr:LICA−369.O1
Type: io

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Name:
Type:

pr:LICA−369.O2
io

.

.

.

.

2
3 4 5

2

1
2 3 4

7

1

5

6

43

55 56

7

Figure 3 Automation module and related configuration modules

6 Automation Language

Rev. 3

3.2 Document Modules

As their name suggests, the document modules are simply documents that describe an appli-
cation or the structure of the network.

The document modules differ from automation modules so that no automation language pro-
gram, i.e. configuration modules, is generated from document modules.

The following types of document modules are available:

� loop circuit documents

� circuit diagram documents

� logic diagram documents

� hardware documents

� field drawing documents

3.3 Configuration Modules

The operation of Valmet DNA is actually defined by an application program consisting of
configuration modules. A number of modules is defined for the operations: function mod-
ules, I/O modules, picture modules etc.

Configuration modules are functional units and basic units of the automation language which
are connected to create an automation−language application program. The application
engineer is able to handle the modules on the engineering work station and download them to
application servers without disturbing the operation of the application.

Configuration modules are built on function blocks, ports and data points. They can be com-
pleted with calculations, logic operations and comparisons by adding blocks written in a high
level language; these blocks are however formulated like function blocks. The set of configu-
ration modules resulting from the connections can also be called the application software of
Valmet DNA.

Concepts of the Automation Language 7

Rev. 3

3.4 Type Modules i.e. Types

Type modules define types used in the automation language: function block types, data types
and bundle types. The application servers of Valmet DNA always have a selection of fixed
library types; the application engineer cannot himself design new type modules.

The types of the automation language are defined on the basis of general type concepts. The
types are divided into three categories on the basis of their role:

� data types

� function block types

� bundle types

Function block
types

Data
types

Bundle
types

Arrays Primitive
types

Structured
types

Basic
types

Types derived
by type

definitions

Automation language
types (type modules)

Fixed frame tables

Figure 4 Type hierarchy of automation language

3.4.1 Data Types

A data type in the automation language is an integrated block of data. Automation language
data types are:

� primitive types

� structured types

� arrays

� fixed frame tables

8 Automation Language

Rev. 3

PRIMITIVE TYPES in Valmet DNA are fixed types, i.e basic types and simple derived
types defined using the basic types.

Basic types include:

� uns16 = unsigned integer, size 2 bytes, range (0...65535)

� float = single precision floating point number, size 4 bytes,
range ± (10-38...1038)

An example of a derived primitive type is the primitive type fails derived from the fixed basic
type unsigned integer (uns16). It is defined as follows:

fails TYPE uns16

Fails has the same characteristics as uns16, in other words, a derived primitive type is actual-
ly formed by renaming a basic type.

The primitive types of the automation language (both basic types and derived types) are pres-
ented in Appendix 1.

Structured Types

Structured types are defined on the basis of other types and they can contain several
members. Possible members include all primitive types or structured types. However, if
necessary, all members can be reduced back to primitive types.

Example:

The structured type ana consists of fault bits and signal.

Its first member is the fault bit field f and the second member the actual value of the analog
signal a expressed in SI units. Member f is a derived type from the primitive type fails, and a is
a derived type from basic type float.

The structure of ana is thus defined as follows:

ana
MEMBERS
 f TYPE fails
 a TYPE float

For instance, an ana−type signal (2,7.72) contains

2 f fault data (input error or line failure)

7.72 a signal value in SI units

Common structured types of the automation language are presented in Appendix 2.

Array

An array is a data structure whose elements are of one primitive or structured type. The ele-
ments can be referenced in a random order by using an index. Valmet DNA automation lan-
guage permits using arrays with 1, 2 or 3 indices, i.e. 1, 2 or 3 dimensional arrays. The limits
of each index are defined when introducing the array.

Example: A two dimensional array quantity is introduced as follows:

quantity (2, 3) TYPE ana

The limit to the first index is 2 and the limit to the second is 3. The array members are of the
structured type ana.

Concepts of the Automation Language 9

Rev. 3

The above examples can be combined (Figure 5):

Basic type
uns16

fails
Derived primitive

Structured primitive

Array

uns16

float

uns16fails (uns16)

ana (fails+float)

quantity (2,3)

f a
ana

quantity

float

ana ana

Basic type

type

type

Figure 5 An example of a data type hierarchy

Fixed Frame Table

Fixed frame table is a structure with a fixed frame, specified by the type, containing a table
whose structure can be changed at the configuration and execution time.

The type of the fixed frame table specifies the dimensions of the frame. The type also speci-
fies the type of the elements both in the frame and in the table inside the frame. They cannot
be changed at the configuration or execution time. Each required combination of element
type and dimensions must exist as a separate type. The type collection of each Valmet DNA
collection shows which table types that collection includes.

The name of the table type indicates both the type of the elements and the dimensions of the
frame. The format of the name is typ_ijk, e.g. ana_9 and cha_536.

First part of the name of the table type (typ) is an abbreviation of the type of the elements.
Abbreviations are as follows (typ and the corresponding element type):

Basic types

cha = char u32 = uns32

i8 = int8 b8 = bool8

i16 = int16 b16 = bool

i32 = int32 flo = float

u8 = uns8 fls = fails

u16 = uns16 −

Common types

ana = ana inl = intl

bin = bin bne = binev

ins = ints ise = intsev

Application types

bo = bo

10 Automation Language

Rev. 3

The second part of the name of the table type (ijk) indicates the dimensions of the frame, one
character for each dimension. The frame table can be at most 3−dimensional. i, j and k are
encoded exponents indicating a power of two. The codes of exponents and the corresponding
values of dimensions are (code and dimension):

0 = 1 8 = 256

1 = 2 9 = 512

2 = 4 a = 1024

3 = 8 b = 2048

4 = 16 c = 4096

5 = 32 d = 8192

6 = 64 e = 16384

7 = 128 −

For example, ana_9 is 1−dimensional table. The type of its elements is ana and the dimension
of its frame is 512. cha_536 is 3−dimensional table. The type of its elements is char and the
dimensions of its frame are 32 x 8 x 64.

Frame table structure

As a data structure, the frame table has two parts. It has a header part (member :header) and
an element part (member :elem). Every frame table has the same type (table) of the header
part, regardless of the dimensions and the element types of the frame. Frame tables with dif-
ferent dimensions and element types are created by using different element parts and differ-
ent default values in the header parts.

Figure 6 Structure of the frame table

� Header part

The type of the header part (:header) of the frame table is table. It includes the struc-
ture data of the frame (:elemtype and :dim) and the table (:mode, :size and :base). It
includes also separate scalar values (:fails, :dataid, :time and :interval) describing
the table.

The data in the header part can be read and written by addressing the corresponding
member, e.g. pr:PM6:BW:header:size(3) or pr:PM6:BW:header:dataid or by ad-
dressing the whole frame table, e.g. pr:PM6:BW.

Concepts of the Automation Language 11

Rev. 3

� Element part

The element part of the frame table (:elem) is the frame of the table. It specifies the
type of the elements of the frame and the dimensions of the frame. It also specifies
the type of the elements of the table and the maximum size of the table.

The data in the element part can be read and written by addressing the corresponding
element, e.g. pr:PM6:BW:elem(3) or pr:QVT:elem(2,6,3) or by addressing the
whole frame table, e.g. pr:PM6:BW.

The element part of the frame table includes two nested parts. The outer one is a
fixed frame, specified by the table type and the inner is a variable table, the variabili-
ty of which is limited by the frame. The frame specifies the maximum size and the
type of the elements of the variable table. The table can be changed at the configura-
tion and execution time.

3.4.2 Function Block Types i.e. Function Blocks

Modules consist mainly of function blocks. Function blocks are linked to other module parts
through connections. For example, the members of two different function blocks communi-
cate via a connection. The description of a function block type presents the function block
members, which determine the structure of connections in the function block.

The types of members in function blocks are defined in the type description (e.g. ana, bin, bo,
float).

On the basis of their operation, function block members can be divided into:

� inputs

� outputs

� configuration parameters

A function block reads data from inputs and writes data to outputs. Connection between dif-
ferent function blocks is established by interconnecting members (inputs and outputs) of the
function blocks. The basic principle in connection is that only members of the same type can
be connected: for instance, an ana−type signal can be connected only to another ana−type
signal, a bin−type signal to another bin−type signal, and so on.

Beside connected members, a function block type may include a number of configurable
parameters. They cannot be changed during the running of the application program, since
their values are specified once for all while configuring the application program.

In graphic design, the function blocks are represented with the symbol shown below. The
function block’s inputs (av, hh, ... ll) are shown at one side of the symbol, and the outputs (out,
hha, ... fa) on the other side. At the center of the symbol, you can give the block’s configurati-
on parameters and their values (hyst = 1).

12 Automation Language

Rev. 3

3.4.3 Bundle Types

Communications between modules make use of ports. Direct communication between func-
tion blocks is not possible between modules. A module may have several ports, which are its
windows to the outside world. Other modules use these ports for communicating with this
module. A module port may be of a bundle type or data type.

The members of a bundle type port permit the collection of data from different points inside
the module into a bundle. The data of a bundle type port can be independent of each other, i.e.
independent data to be connected which is gathered from inside the module. The data in a
bundle are available to other modules through the port.

Bundle types are used, for instance, for communications between a process control server
and a control room. For example, the process control server types cntb and am.opb do not
contain any (function block) operations, but control room modules can address them in the
same way as the corresponding function blocks cnt and am.

Application Program Elements 13

Rev. 3

4 Application Program Elements

The automation and configuration modules consist of the automation language’s basic ele-
ments which are divided into three groups:

� data points external data point

local data point

� ports interface port

direct access port

� function blocks

A data point is defined on the basis of data type, a port on the basis of bundle type or data type,
and a function block on the basis of function block type.

A strict typing is applied between the automation language elements inside a module; in oth-
er words, only elements of the same type can operate with each other. In communications
between modules, this strict typing is eased off in a controlled manner. For a type, other types
with which it can communicate are defined. Also different viewpoints are defined to a type:
when data is requested from an element, only data corresponding to the specified viewpoint
will be picked. Owing to this arrangement, only necessary data will be transmitted. These
typings and viewpoints cannot be configured or changed by the application engineer.

4.1 Data Points

Data points can be local or external.

4.1.1 Local Data Points

Local data points are uniquely named areas of data in a module’s data space. Function blocks
and ports connect to these local data points to exchange data inside a module. A local data
point is known only inside a module, not elsewhere. A local data point is needed in certain
internal connections of a module such as connections between calc, logic, and cmp (compari-
son) function blocks.

14 Automation Language

Rev. 3

In graphic design, a local data point is expressed by the following symbol (Figure 7):

Figure 7 Local data point symbol

4.1.2 External Data Points

External data points are located in the same data area as local data points. The communica-
tion routine of Valmet DNA copies data to these points from the data points of other modules
via ports. The name of an external data point refers to a name, i.e. port, which is known in
Valmet DNA.

In a module, all data that comes from outside the module is presented as external data points.
Communication reads the data from the interface or direct access port of the source module to
the external data point of the target module, or vice versa, from the external data point to the
ports of other modules.

An external data point can be of the following type:

� input

An input type external data point reads data from other modules and its data can be
connected inside a module to function block inputs.

� output

An output type external data point writes data to other modules via ports and it can
be connected inside a module to a function block output.

� input−output

An input−output type external data point can both read data from and write data to a
function block and through ports to other modules. This kind of data transfer is used,
for instance, in recipe control.

An external data point can communicate via ports with other modules by:

� continuous communication

Continuous communication is used in most cases, in other words, the module confi-
guration includes setting of the communication frequency (it must be the same as
the execution frequency of the module connected to it).

� conditional communication

Conditional communication is used if it is not necessary to update a data on a contin-
uous basis (for example, in recipes and conditional copy function blocks).

Application Program Elements 15

Rev. 3

In graphic design, an external data point is expressed by the following symbol type (Figure 8
shaded area).

Figure 8 Connection of an external input to a function block

The continuous external input pr:40−P−406:av in the figure is connected to the 1stfl function
block input p. The function block to which an external data point refers must be defined in the
module as a direct access port. The external input in the example uses the direct access port
pr:40−P−406 in module pr:40−P−406.F to access the member av of the function block (am)
connected to the port.

An initial value can be given to both data point types (both external and local), and both ports
can be accessed from within the module.

External data points should be given appropriate names, for example by deriving the names
from tag identifiers. Local data points can be given even simpler names. For instance, in
graphic design a local data point is addressed by the letter ”P” and data points are numbered
consecutively: P1, P2, P3 etc.

Data points of a primitive type are indivisible; structured data points and array data points are
divided into elements, which can be addressed by specifying the index of the element or
member.

4.2 Ports

Ports are used for creating module interfaces. They allow different modules of the applica-
tion network to communicate. Ports can be direct access ports or interface ports, named with
an appropriate identifier.

4.2.1 Direct Access Port

A direct access port is known in the entire application network, in other words, its name is
unique in the entire Valmet DNA. Data connected to it can be written/read by using the port
name in the entire Valmet DNA. As the name of a direct access port is unique in the entire
application network, the same name must not occur elsewhere in the application network.

Either a single piece of data or the entrire function block can be connected to a direct access
port. If only a single data point is connected, only that data point is visible outside the module
through the port. If the entire function block is connected, all members of the function block
can be accessed by other modules through the port.

16 Automation Language

Rev. 3

Following is an example of connecting a single signal to a direct access port (Figure 9). The
direct access port (pr:40−FAQ−437) symbol is shown in the shaded area.

In this example connection, the status of output o1 of the function block 2cmp can be trans-
ferred outside the module via the port, which means that its data can be used in any part of the
application network.

Figure 9 Connecting a direct access port to one signal

Another way to use a direct access port is to connect (name) the entire function block to it.
Thus the values of all members of the function block (inputs/outputs/parameters) can be ac-
cessed by other modules simply by the name of the direct access port. A direct access port is
used mainly by the control room to request display data from a process control server. In addi-
tion a process control server has a few function blocks that are almost always assigned a direct
access port. These include:

� am = (analog measurement),

� pid = (PID controller),

� mtr, mtre = (motor control),

� mgv, mgve = (magnetic valve control),

� qcnt = (quantity counter),

� cnt = (counter).

The following figure shows a graphic symbol of a direct access port connected to the entire
function block. The direct access port is represented by the rectangle (shaded area) at the top
of the function block and its name (pr:QRC−1234) is shown in the middle of the area.

Figure 10 Expressing a direct access port connected to a function block

In the example, the function block members can be accessed by other modules by names,
such as: pr:QRC−1234:me, pr:QRC−1234:con.

The modular structure of the automation language supports the engineer by permitting the
use of defaults and previously configured blocks. However, the defaults are treated as de-
faults at the engineering environment only; once the information is moved to the application
servers, defaults cannot anymore be distinguished from values entered by the engineer.

Application Program Elements 17

Rev. 3

4.2.2 Interface Port

A single data point in a function block can be connected to the module’s interface port. In this
way, single pieces of data can be transferred between modules or application servers.

Data connected to an interface port can be written/read by a name which consists of the name
of the configuration module and the name of the actual interface port.

Following is an example (Figure 11), where an interface port is connected inside a module to
the output out of the function block 5ccob. This function block output out is now accessible
from any part of Valmet DNA by the module name and port name as follows
pr:S−2237.F:out1. In this example, the module name is pr:S−2237.F and port name out1.

module pr:S-2237.F

Figure 11 Graphic representation of an interface port

Ports are connected inside a module, so their values can be defined and read through the ports.
In terms of their operation, direct access and interface ports are similar.

4.3 Function Blocks

Function blocks carry out a certain function such as control algorithms and connect to their
environment through connection points. The connection points and configuration parame-
ters of a function block are called function block members. Like other automation language
objects, members are also typed.

If a function block writes data to its connection point, it is an output. If it reads data or both
reads and writes data, the connection point is named as an input.

The operation of a function block is defined using configuration parameters. Parameters can
be given constant values, but they cannot be connected to data points. Function block places
its internal status data to its internal members. They are not visible to the user of the function
block and they cannot be connected. Depending on its type, a function block contains instruc-
tions for handling the data connected to its connection point.

Both inputs and outputs as well as configuration parameters have types assigned to them,
which means that only certain data types can be connected to them (this applies to inputs and
outputs) or that only certain types of values can be assigned to them (configuration parame-
ters).

The engineer should name function blocks by assigning them an identifier. The identifier is
made of the block’s number and a type code following it. Examples of possible identifiers are
1pid and 99hys. The first block has a number 1 and a type pid, the second block is numbered
99 and has a type hys.

Inside a configuration module, function blocks are executed in an ascending numerical order.

18 Automation Language

Rev. 3

The following figure shows a process control server function block, which is used in analog
measurements.

Figure 12 The symbol of analog measurement function block

The am function block includes the following:

� two configuration parameters, one of which (hyst) is shown in the symbol

� five inputs

� six outputs

In graphic design, the configuration parameters are entered inside the function block, and
they usually define the function block’s operation modes. The am function block’s configura-
tion parameters are:

� hyst
specifies the magnitude of the block’s hysteresis; this member is of the type float

� un
engineering unit; a comment that does not affect the block’s operation

Besides the configuration parameters, the function block includes inputs such as the follow-
ing:

� av
Value of the measured analog signal

� hh
Value of the higher high alarm limit

A signal or constant value can be connected to each input. The av input is of the type ana, and
the hh input of the type float.

In addition, the function block includes outputs such as the following:

� out
The operated data, which is sent to the field; the type of out is ana

� hha
Higher high limit alarm, whose type is bin

All members of this function block are provided with initial values that they will have until
some data updates them.

The am function block can now be presented as follows (all function blocks of Valmet DNA
are described in the same way in the function blocks manuals). This presentation format in-
cludes the function block’s all members, their types and default values, as well as a descrip-
tion of each member’s operation or function.

Application Program Elements 19

Rev. 3

4.3.1 Configuration Parameters

hyst
Type: float
Default: 0.0
Description: Hysteresis

Alarm becomes redundant when analog signal returns to permissible side of alarm
limit and differs from the limit by the amount defined by hyst.

un
Type: uns16
Default: 0
Description: Comment

Engineering unit; a comment that does not affect the operation of the function block.

4.3.2 Connection Parameters

Inputs

av
Type: ana
Default: 0 0.0
Description: Analog value

Value of the measured analog signal.

hh
Type: float
Default: 0.0
Description: Higher high limit

The value of higher high alarm limit. Function block allows crossing the alarm lim-
its (Damatic XDi version 6.0 and up). For example high and low limit alarms can be
on simultaneously

With a parameter in cpu−configuration file (hook −classic_pid_alarms) the function
can be returned back to what it was before: crossing the alarm limits (e.g. hh < h) is
forbidden i.e. function block turns the alarm limits back to right order (copies hh as
the value of h).

h
Type: float
Default: 0.0
Description: High limit

Value of high alarm limit. For limit check, refer to hh.

l
Type: float
Default: 0.0
Description: Low limit

Value of low alarm limit. For limit check, refer to hh.

20 Automation Language

Rev. 3

ll
Type: float
Default: 0.0
Description: Lower low limit

Value of lower low alarm limit. For limit check, refer to hh.

Outputs

out
Type: ana
Default: 48 0.0
Description: Output

Operateable signal taken to the field. Gets the initial value out:a = av:a at initializa-
tion, provided that input signal’s fault bits have not been set.

hha
Type: bin
Default: 48
Description: Higher high limit alarm

ha
Type: bin
Default: 48
Description: High limit alarm

la
Type: bin
Default: 48
Description: Low limit alarm

lla
Type: bin
Default: 48
Description: Lower low limit alarm

fa
Type: bin
Default: 48
Description: Input fault alarm

Input signal’s fault bits have been set.

Application Program Elements 21

Rev. 3

The following figure shows an example connecting an am function block to other function
blocks.

Figure 13 Example of function block connections

After the graphic representation of the function block the corresponding connection for the
am function block is shown below in list form. (The listing only includes the am function
block part of the connection.)

1am IS pr:LI−111
 hyst=4
 un= −
 av< pr:LI−111.I:m
 hh< −
 h< −
 l< −
 ll< −
 out> −
 hha> −
 ha> −
 la> −
 lla> −
 fa> −
;

22 Automation Language

Rev. 2

5 Application Program Written in the
Automation Language

An application program written in the automation language consists of units, i.e configurati-
on modules which are sensible both from the point of view of the application engineer and
process control. The modules consist of data points, ports, function blocks and algorithmic
statement blocks used for calculations, logic operations and comparisons. Configuration
modules communicate on the basis of port names which are known to the Valmet DNA data
management.

Automation modules are graphic representations of the application software. They can con-
sist of several configuration modules. An automation module can contain the most important
configuration modules related with a single control loop, such as the following:

� process control server’s function module and I/O modules

� control room’s tag, operating display and event modules.

In automation modules, the parts of configuration modules are represented by illustrative
symbols, and different signals are coded in different colours to make connection easier.

5.1 The Structure of an Automation Module

An automation module consists of the following parts.

� automation module administration part (1)

� function module administration part (2)

� connection field for external inputs and input modules (3)

� connection field for external outputs and output modules (4)

� connection field for function blocks (5)

� control room modules related with the automation module (6)

� page (7)

Application Program Written in the Automation Language 23

Rev. 2

The following figure (Figure 14) shows an automation module with the module parts pres-
ented in the above list marked in numbers.

23 423 4

5 1

6

7

Figure 14 Automation module and its parts

24 Automation Language

Rev. 2

5.2 The Structure of a Configuration Module

In a list form, an automation language configuration module contains three parts:

� administration_part

� representation_part

� functional_part.

5.2.1 Administration Part

The module’s administration part contains data used in module and database management.

Following is an example of a module’s administration part in a list form:

ADMINISTRATION_PART
 NAME: pr:89LIC−2305.F
 TYPE: function
 STATUS: incomplete
 CREATOR: tim
 CREATED: 89−08−23 15:34
 MODIFIER: tim
 MODIFIED: 89−08−23 16:14
 DESTINATION: AP02
 EXECUTION: 400
 ORDINAL: 3
 DESCRIPTION:

The administration part of a configuration module is presented as a form, containing the fol-
lowing data:

NAME

� The unique name of a module consists of components separated with colons.

� The module naming conventions are described in Chapter 6 ”The Automation Lan-
guage’s Naming Conventions”.

TYPE

� the following module types are used:

� function
function modules

� io
I/O interface modules

� tag
modules used for tag text definitions

� header
modules used for generating monitor header texts and time

� operation
modules used for generating operating windows

� activity
event printer and monitor definition modules

� event
modules used for generating event log and alarm area identifiers

� registering
modules used for generating area identifiers for alarm list, event log and
header and for controlling the alarm horn and event printers

� keyboard
modules used for defining direct selection keys

Application Program Written in the Automation Language 25

Rev. 2

� clock
modules used to define switching between summer and winter time

� dio
modules used to define the I/O interface of the Damatic interface server

� picture
modules used for generating monitor pictures

� hierarchy
modules used for creating the picture hierarchy

� path
modules used for creating hierarchy path

� palette
modules used for defining colours used in monitors and for hard copies

� menu
modules used for creating the hierarchy menu for operating window

� sequence
modules used for generating sequence programs

� card
PLU and MCP modules

STATUS

� module status

� incomplete

� complete

� tested

CREATOR

� the person who created the module

CREATED

� date and time of creation in the form yy−mm−dd hh:ss

MODIFIER

� person who made the last modification to the module

MODIFIED

� date and time of the last modification in the form yy−mm−dd hh:ss

CREATOR, CREATED, MODIFIER and MODIFIED are updated automatically in the mo-
dule upon creation or modification.

DESTINATION

� the module’s package

For more detailed information, refer to Chapter 6 ”The Automation Language’s
Naming Conventions”.

EXECUTION

� module execution interval in milliseconds, range 200 ms...64000 ms with incre-
ments of 100 ms

26 Automation Language

Rev. 2

ORDINAL

� unsigned integer, which defines module execution order in the group of modules to
be executed within the same period of time. In control tasks, modules are executed
in an ascending order based on the ORDINAL field, i.e., after modules with an
ORDINAL field value of 0.

If several modules have the same ORDINAL field value, such as 0, these modules
will be executed in alphabetical order based on the module name.

In other words, modules are executed in the following order:
Among modules within the same execution period, the modules whose ORDINAL
field value is zero are executed first. If there are more than one modules of this kind,
they will be executed in alphabetical order. Next in the order are those modules
within the same execution period that have an ORDINAL field value of 1, and so on.

DESCRIPTION

� the engineer’s description of the module. The description must be inserted between
quotation marks (” ”) in configuration modules. In automation modules, the
DESCRIPTION is not enclosed in quotation marks. This field can also be left blank.

The module status, creation and modification data are used in module version management
and project monitoring. The description contains comments on the destination and function
of the module.

5.2.2 Representation Part

The module representation part defines the following things:

� External data points

� external data to be connected to the module

� Local data points

� named local or internal data of the module

� Graphic definition, for example, for picture modules

� List form graphics are connected to a picture module after the GRAPHICS
definitions.

� Direct access ports

� A module’s direct access ports connect with individual data points or refer
to an entire function block.

� Other modules read data from a module through a direct access port.

� Interface ports

� A module’s interface ports connect with individual data points.

� Other modules read data from a module through an interface port.

Application Program Written in the Automation Language 27

Rev. 2

Below is an example of a configuration module representation part combined from the exam-
ples presented hereafter:

REPRESENTATION_PART

 EXTERNALS
 pr:SC−265.I:m TYPE ana TRANSFER 192,10,0,0 ;
 pr:SC−265.oI:m TYPE ana TRANSFER 192,10,0,0 ”open limit”;
 pr:SC−265.cI:m TYPE ana TRANSFER 192,10,0,0 ”close limit”;
 pr:SC−265.oO:c TYPE bo TRANSFER 65,10,0,0 ”close control”;
 pr:SC−265.oO:cb TYPE bin TRANSFER 192,10,0,0 ;
 pr:SC−265.cO:c TYPE bo TRANSFER 65,10,0,0 ”open control” ;
 pr:SC−265.cO:cb TYPE bin TRANSFER 192,10,0,0 ;

 LOCALS
 P1 TYPE ana ;

 DIRECT_ACCESS
 BLOCK pr:SC−265 ;

 INTERFACE
 MODSTAT TYPE ktstat ”module status” < (1,1,0,1,1) ;

External Data Points
In graphic design, an external data point is marked with the following symbol:

Use:

If a module wants a signal from another module, it presents an external input whose type is
the same as that of the desired signal’s. An external input’s communication mode is normally
continuous (EXT IN CONTINUOUS).

Different symbols are used in graphic design for different types of external data points. The
symbol’s colour determines the external data point’s type, while the symbol’s shape defines
the communication mode.

External data points are presented in the configuration module administration part after the
keyword EXTERNALS.

The presentation of an external data point includes:

� name of the external data point

The name of the external data point name, i.e. the name with which data is retrieved
or transmitted is determined by the module port from which the data is read. The
name in itself instructs communication to access the desired data.

In the following example, we have the name of an external input which is deter-
mined by the input module interface port. In this example, the module name is
pr:LIC−100.I and its interface port specifier is m. The components of the name are
separated by colons, the standard separator in the automation language, so the exter-
nal data point will be

pr:LIC−100.I:m TYPE ana TRANSFER 192,4,0,0 ”level”;

� data type

An external data point reserves a data area corresponding to its type, such as an area
of the type analog (ana).

In graphic design, the data point’s colour determines the data type.

In a list format, the type is entered after the TYPE keyword in the data point defini-
tions. The following example shows the type entry for an external data point whose
type is ana:

pr:LIC−100.I:m TYPE ana TRANSFER 192,4,0,0 ”level”;

28 Automation Language

Rev. 2

� possible initial value of the data

A data point can be initialized, so it will have a value even if it has not yet been up-
dated by communication.

Initialization is accomplished by writing the ”=” character after the type code and
writing appropriate initial values for the type inside parentheses. Example:

pr:LIC−100.I:m TYPE ana=(0,0.5) TRANSFER 192,4,0,0 ”level”;

In graphic design, parentheses are not used to give initial values for a data point.

If an initial value is not specified, the data point is assigned the default value corres-
ponding to its type when the module goes to the application server. The initial value
will be valid until it is changed by a connection or communications.

� definition of data transfer mode

Different types of external data points can be defined for different communication
needs. The data transfer mode refers to whether the external data point is an input or
output or both, and whether the data point communicates with others either continu-
ously or only when data has changed.

Continuous external input

Continuous external output

Continuous communication is the most common mode. In this mode, data is trans-
ferred continuously between data points. If there is a lot of data to be transferred and
continuous updating of the data is not required, it is also possible to use conditional
communication.

Conditional external input

Conditional external output

A conditional external output can only be used in connection with conditional copy
function blocks (the ccoX blocks).

A conditional output is executed always when the related ccoX function block’s
copying condition is in a state where the block is writing something to its output.

Conditional outputs are used especially in sequences and recipes since they do not
normally require continuous communication: the operation is achieved with condi-
tional communication that loads the network less.

Application Program Written in the Automation Language 29

Rev. 2

NOTE!
A conditional external output can only be used in connection with ccoX function
blocks.

NOTE!
A conditional external output must not be used in the manner of a continuous output
if the module is in continuous execution (e.g. a sequence step), because this would
load the traffic too much.

Continuous input and output

If the communication mode is continuous input and output, communication is possi-
ble in both directions between data points. This communication mode is used, for
instance, between the variation modules and parameter modules of recipes.

In high level language design, the data transfer is expressed with a group of four
numbers which is encoded as follows:

The first number indicates the direction of data transfer

128 = retrieve data (input)
1 = transmit data (output)

and the nature of data transfer

+64 = continuous
+32 = conditional
+16 = event
+2 = direct addressing

For instance, if data is retrieved on a continuous basis, the first number will be
formed as follows: 128 + 64 = 192.

The second number defines the data transfer interval in hundreds of milliseconds.
The number may have the values 0...255. Zero defines a single transmission. The
value 1 corresponds to 100 ms update interval; thus the maximum value 255
corresponds to 25.5 second data transfer interval.

The third number is zero.

The fourth number indicates the update mode

7 = event 1 −> 0 or 0 −> 1
6 = event 0 −> 1
5 = event 1 −> 0

If data transfer is continuous, the value of the fourth number is irrelevant; a zero will
do.

30 Automation Language

Rev. 2

In the following, the above signal is completed with the update mode:

pr:LIC−100.I:m TYPE ana TRANSFER 192,4,0,0 ”level”

The symbol used in graphic design determines the data transfer mode.

� possible comment

The comment can also be omitted. In list format design, the comment is placed be-
tween quotation marks (” ”). Quotation marks are not used in graphic design.

pr:LIC−100.I:m TYPE ana TRANSFER 192,4,0,0 ”level”;

� data point definition is ended with a semicolon (;)

Local Data Points

In graphic design, the following symbol is used for a local data point:

Use:

The need to use a local data point is rather rare in graphic design. In most cases, the CAD tool
will itself create the local data points in the configuration module generated from the graph-
ics. (Local data points are only shown in the configuration module, not in the graphic image.)

However, a local data point can be used e.g. in linking a signal

and in assigning an initial value:

Application Program Written in the Automation Language 31

Rev. 2

Local data points are presented after the LOCALS keyword in a configuration module’s RE-
PRESENTATION PART.

The presentation of a local data point includes:

� name

The name of a local data point must begin with a letter. The rest of the name can
include letters, numbers, period (.), and underline character (_). An example of a
local data point name: P1

� possible dimension

If the local data point is an array, also dimensions and index limits are defined.

The dimension is defined with two integers inserted in parentheses. In this example,
quantity is a 2−dimensional array whose index limits are 2 and 3. A local data point
reserves an area corresponding to its type and dimensions in the data space of the
module. An example of a local array−type data point:

quantity (2,3) TYPE float=(0,2.1,0,5.0,1,40.86) ”2 dimensional
array”;

In graphic design, the dimension is given as a number without parentheses.

� data type

A local data point reserves a data area corresponding to its type, such as a float type
area. The type is marked in the data point definition after the keyword TYPE. Fol-
lowing is an example of expressing a float type external data point type:

P1 TYPE ana=(0,2.1) ”local data point”;

In graphic design, the data point’s colour defines the data point’s type.

� possible initial value of the data

A data point can be initialized so that it will have a value even if it has not yet been
updated by communications. Initialization is executed by entering the ”=” character
after the type code and by giving initial values suitable for the type inside paren-
theses. For example:

P1 TYPE ana=(0,2.1) ”local data point”;

In graphic design, an initial value is given as a number without parentheses and the
”=” character.

Initial value can also be omitted. If initial values are not specified, the data point will
be given default values corresponding to its type when the module enters the
application server. The initial values will remain constant unless they are changed
through connection or communications.

� possible comment

Comment can also be omitted. The comment is inserted between ” ” characters as
follows:

P1 TYPE ana=(0,2.1) ”local data point”;

In graphic design, a comment is not placed between quotation marks.

� data point definition ends with a semicolon (;)

32 Automation Language

Rev. 2

Adding Graphics to a Module

In graphic design, the user does not have to define the graphic picture in list format. Instead,
the generation utilities will automatically create a listing from the graphics.

In list format presentation of graphics, the drawing commands are given in the section fol-
lowing the word GRAPHICS. Before the drawing commands, you give the name of the pic-
ture after DEFINE PICTURE.

The picture template presented in the representation part is connected to the module through
a function block using the name of the representation part.

An example of adding list format graphics to a picture module:

REPRESENTATION_PART
 EXTERNALS
 .
 .
 .
 GRAPHICS
 DEFINE PICTURE pic1
 PELSIZE 1 1
 COLOR 0
 MOVE A 0 638
 LINE R 300 20
 .
 .
 STOP PICTURE
 ;

FUNCTIONAL_PART
 .
 .
 1draw
 nap < pic1
 ;
 .
 .
END

Refer to Appendix 3 for more information on the automation language’s list format graphic
commands and their use.

Direct Access Ports

In graphic design, direct access ports are marked with the following symbols:

direct access port
connected to one point

direct access port connected
to entire function block

Application Program Written in the Automation Language 33

Rev. 2

Direct access ports are presented in the configuration module REPRESENTATION PART
after the keyword DIRECT_ACCESS.

The presentation of a direct access port includes:

� port name
Port name usually refers to a module name, however without a type specifier.

Example:

pr:XI−101 TYPE ana ”comment” < (0,100.0);
� port type

A port type is defined as the signal type to be connected to the port. A port connected
to a function block is not assigned a type. In this case, the port definition starts with
the word BLOCK, followed by the port name alone.

Example:

pr:XI−101 TYPE ana ”comment” < (0,100.0);

� possible comment
The definition of a port may include comment text, which is separated from the rest
of the entries with quotation marks (””).

In graphic design, the quotation marks are not used in a comment text.

Example:

pr:XI−101 TYPE ana ”comment” < (0,100.0);
� possible port connection either to a local or an external data point or reference to a

function block member

If the port is connected either to a local or an external data point or function block
member, the port connection is marked after it. The connection is defined by the ”<”
character.

Example:

pr:XI−101 TYPE ana ”comment” < (0,100.0);
The definition of a port connected to an entire function block starts with the word
BLOCK followed by the port name alone.

� the definition of a direct access port ends with a semicolon (;)

The complete definition of a direct access port:

REPRESENTATION_PART
.
.
 DIRECT_ACCESS
 pr:XI−101 TYPE ana < (0,100.0);
 BLOCK pr:LI−100;
.
.
FUNCTIONAL_PART

 1pid IS pr:LI−100
 pu= −

In the examples, the first direct access port pr:XI−101 is connected to the first element of a
2−dimensional array ”quantity”. Character ”<” indicates the connection.

A direct access port can also be defined in shorter format:

pr:XI−101 TYPE ana< − ;

In this case, the signal to be connected to the port is defined in the signal itself.

The second direct access port pr:LI−100 is presented as a port connected to an entire function
block. The functional part (1pid IS pr:LI−100) defines the function block that the port refers
to. All members of the 1pid function block are thus made visible to other modules through the
direct access port.

34 Automation Language

Rev. 2

Use:

A direct access port referring to an entire function block can be connected to the following
function blocks:

� am

� pid

� qcnt

� cnt

� mtr

� mtre

� mgv

� mgve

In general, all loops/signals shown in the control room are connected to a direct access port.

Typically, the ”source module” has a direct access port while the destination modules present
an external input requesting the desired signal from the port.

Interface Ports

In graphic design, an interface port is marked with the following symbol:

output interface portinput interface port

Use:

Signals to be transferred to other modules are defined as interface ports. The requester of the
data presents an external input asking for the desired signal (pr:NAME.F:interface port spec-
ifier).

In an application program listing (in its REPRESENTATION PART), interface ports are pres-
ented after the keyword INTERFACE.

An interface port presentation includes:

� port name

The normal limitations in automation language also apply to the naming of ports. In
general, the output ports of function modules are named out and identified with a
number. For example, out1, out2. The input ports of a function module are named in
followed by a number such as in1, in2. (In graphic design, the port name is preceded
by a colon.)

Interface ports can also be named using names derived from module names.

out1 TYPE bin ”comment” < P1;

Application Program Written in the Automation Language 35

Rev. 2

The following names are recommended in naming ports:

In input modules:

m = measurement

In output modules:

c = control
cb = feedback

Examples of entering port specifiers:

 pr:LIC−100.I:m (measurement)
 pr:50−HS−115:c (control)
 pr:50−P−125:cb (feedback)

In graphic design, the naming of ports occurs ”automatically”.

� port type

Port type is defined as the type of the signal to be connected.

In graphic design, the symbol’s colour defines the port type.

out1 TYPE bin ”comment” < P1;

� possible comment

A port definition can contain comment text, which is separated from the rest of the
port definition by quotation marks (””).

In graphic design, the quotation marks are omitted from a comment text.

out1 TYPE bin ”comment” < P1;

� possible port connection to local or external data point, function block, or constant

out1 TYPE bin ”comment” < P1;

� interface port definition ends with a semicolon (;)

out1 TYPE bin ”comment” < 5ccob:out;

In the above examples, the interface port out1 is connected to the output out of the 5ccob
function block in a module.

The definition can also be given in shorter format:

out1 TYPE bin < −;

In this case, the signal to be connected to the port is defined in the signal itself.

5.2.3 Functional Part

A module’s functional part consists of function blocks. The desired module operation is con-
figured by combining the function blocks and the data points and ports defined for them in the
REPRESENTATION PART.

A module’s functional part consists of function blocks that can be provided with parameters
and interconnected. The function blocks in a display module are usually independent and are
only provided with parameters. A function module, on the other hand, may have a large num-
ber of connections.

36 Automation Language

Rev. 2

The following figure shows a part of an automation module and the corresponding configura-
tion module’s functional part in list format.

FUNCTIONAL_PART

1not
 in< pr:89P−2305:ins
 out> −
;

2ccob
 mode= (1)
 fmask= (0)
 cnd< pr:89P−2305:ins
 in< (1)
 out> −
;

3pid ON pr:89LIC−2305
 pu= −
 squ= −
 iu= −
 deu= −
 ffu= −
 parx= −
 cmode= (0)
 condir= (1)
 aftfm= (0)
 aftfc= (1)
 fbact= (2)
 fbmask= (12)
 memi= (0.0)
 mema= (100.0)
 ffmi= −
 ffma= −
 comi= (0.0)
 coma= (100.0)
 bias= −
 conch= (1.0)
 slow= −
 sp2u= (0)
 sp3u= (0)

 track1= (0)
 track2= (0)
 track3= (1)
 cha1= −
 cha2= −
 cha3= −
 mau= −
 eau= (0)
 coau= (0)
 ahys= −
 kp< (0,0.75)
 ti< (0,30.0)
 td< −
 tdf< −
 kff< −
 me< pr:89LIC−2305.I:m
 mff< −
 sp1< −
 sp2< −
 sp3< −
 conb< pr:LIC−2305.O:cb
 colmi< (0,0.0)
 colma< (0,100.0)
 isp< −
 ma< 2ccob:out
 parch< −
 amc< (1)
 mac< (1)
 ion< −
 fm< −
 fc< 1not:out
 fcin< P1
 pos< pr:89LIC−2305.O:cb
 mehh< (100.0)
 meh< (100.0)
 mel< (0.0)
 mell< (0.0)
;

Application Program Written in the Automation Language 37

Rev. 2

In the functional part, each function block is presented in a separate section. Function blocks
are numbered consecutively (1not, 2ccob and 3pid). The operation of a function block can be
explained in the list format by writing a comment inserted in quotation marks after the func-
tion block identifier and name, example: 3pid ”Controller”.

The operation of the function block 2ccob in the example can be altered by the configuration
parameters mode and fmask, to which have been given values after the ”=” in the list format.
In this function block, only mode is initialized, so fmask will have the default specified in the
general description of a ccob function block.

Function block connections are defined with characters ”<” (input) and ”>” (output) to mem-
bers pointed to by the characters. In the above example, the external input
pr:89LIC−2305:ins is connected to the input in of the function block 1not (in<
pr:89P−2305:ins).

The output out of the same function block is left unconnected, so it is followed by character
”−”. (If a function block template is used for making the listing, the members already have the
”−” characters.) A signal can be left undefined when the signal to be connected is defined at
the other ”end” of the signal, i.e. in fc of 3pid (fc< 1not:out).

The input in of the function block 2ccob is connected to the constant 1, which is presented in
the listing as follows: in< (1).

In graphic design, function block parameters are requested in clear text from the user and
signal connections are made by connecting points with lines. A generator converts the graph-
ic picture to list form configuration modules, so the above structures describing signal con-
nections are formed automatically.

In configuring list form, modules help is available, for example, on editor commands and
types (function blocks) to be used. The function block help texts (function block templates)
can be picked to the module to be designed, so all members of the function block will be vis-
ible. A function block member must be initialized only if you want to change its default initial
values. Likewise, only the members that are relevant in the operation of the module need to
be connected.

A function block definition ends with a semicolon.

You should notice the following when defining a function block:

� Configuration parameters cannot be connected; you can only give numerical values
for them. This is represented by the character ”=” in connection with the parameters.
You should then notice, for instance, that the tuning parameters of a pid controller
are not configuration parameters but inputs from the point of view of the pid func-
tion block. Thus they can be controlled e.g. through another function block.

� Only those configuration parameters (=), inputs (<) and outputs (>) to which you
want to enter data must be presented. Others will have the default values specified in
the function block definition.

� Inputs or outputs can also be connected with a constant, which is written inside pa-
rentheses. The parentheses are needed, for instance, to distinguish the constant
(578.051) from the external data 578.051. Both can be connected to a function
block. (In graphic design, it is not necessary to insert constants in parentheses.)

(The use of calculation, logic and comparison function blocks differs slightly from
the use of other function blocks.)

38 Automation Language

Rev. 2

Calculation

The application programmer defines calculation algorithmically by entering the mathemati-
cal expressions directly in their normal format. He can utilize operator priorities, paren-
theses, etc.

Calculation can be performed on the following types of variables:

The functions include the following:

� ana analog variable

� ints 16 bit integer with fault bits

� intl 32 bit integer with fault bits.

The following operators can be used (listed by descending priority):

� *,/ = multiplication and division

� +,− = addition and subtraction

Calculations can also be grouped using parentheses, which have the highest priority.

Functions are:

� SIN = sine function

� EXP = e−base exponent

� LN = e−base logarithm

� SQRT = square root

� ABS = absolute value

Calculation is defined as part of the function block list of the configuration module, as shown
in the following example.

REPRESENTATION_PART

 EXTERNALS
 pr:F−129.I:m TYPE ana = (0,0.5) TRANSFER 192,4,0,0 ;

 LOCALS
 P1 TYPE ana = (0,0.6000) ;

 DIRECT_ACCESS
 pr:FF−128 TYPE ana < − ;

 INTERFACE
 out1 TYPE ana < − ;
 MODSTAT TYPE ktstat < (1,1,0,1,1);

FUNCTIONAL_PART
 CALCULATE 1calc
 CONNECT
 a TYPE ana < pr:FF−128 ;
 b TYPE ana < F−129.I:m ;
 c TYPE ana < P1 ;
 o TYPE ana > out1 ;
 FORMULAS
 o=a*b/c;
 STOP 1calc
.
.
END

As you see, calculation is defined in much the same way as function blocks. The application
programmer only enters the identifiers of the connections and gives their types, because there
is no predefined type specification as for function blocks in general.

Application Program Written in the Automation Language 39

Rev. 2

There are some more limitations in the connection of calculation, logic and comparison func-
tion blocks than in the case of ordinary function blocks: the connection cannot be made from
outside, in other words, their members cannot be marked with ”−” which would allow defin-
ing the connection in another function block. The connections of these function blocks must
be defined in the same function block or else a local data point must be used for the connec-
tion.

The following example illustrates the wrong and the right way of making a connection:

WRONG RIGHT

2dvsa 2dvsa
 in1< − in1< −
 in2< − in2< −
 out>3calc:b out> −
; ;
3calc 3calc
 a< P1 a< P1
 b< − b<2dvsa:out
 o>2dvsa:in1 o>2dvsa:in1

NOT PERMITTED

PERMITTED

In graphic design, the compilation utilities create the permissible connections automatically.

Another limitation in the calculation, logic and comparison function blocks is that you can-
not connect constants directly to their members. Instead, such connection has to be per-
formed through a local data point or an interface/direct access port. You initialize the port or
data point with the value that you want to connect to the function block, and connect the port
to the function block.

A constant can be entered directly in a formula (e.g. o=a*b*100.0). However, the value of the
constant cannot then be changed, for instance, with debugger.

If you want to adjust the value of a constant with the debugger, it is recommendable to con-
nect the constant to an interface or direct access port and initialize the port with the desired
constant.

a< −
b< −
c< (0,0.9);

REPRESENTATION_PART
 INTERFACE

in1 TYPE ana <(0,0.9);

FUNCTIONAL_PART
 1calc
 .
 .
 a< −
 b< −
 c< in1;

NOT PERMITTED PERMITTED

40 Automation Language

Rev. 2

The third limitation in calculation, logic and comparison function blocks is that they cannot
be connected directly together. If there is a need to connect these function blocks together, the
connections are made via local data points.

In graphic design, the local data point is generated automatically in the configuration modu-
le.

REPRESENTATION_PART
 LOCALS
 P1 TYPE ana =(0,0.9);

FUNCTIONAL_PART
 1calc
 o>P1;

 2calc
 c<P1;

NOT PERMITTED PERMITTED
 FUNCTIONAL_PART
 1calc
 o>2calc:c ;

Comparison

Comparison is defined in much the same way as calculation, but the inputs can be of the types
ana, ints or intl, and the output is of the type bin.

The following comparison operators can be used for comparisons:

� >= greater than or equal to

� <= less than or equal to

� == equal to

� != not equal to

� > greater than

� < less than

In addition, the following logic operators are available between bin signals generated inside a
cmp function block:

� OR logic or

� XOR logic exclusive or

� AND logic and

� NOT negation

Comparisons can be grouped by parentheses.

Application Program Written in the Automation Language 41

Rev. 2

Like calculations, comparisons are defined as part of the function block list of the configura-
tion module.

FUNCTIONAL_PART
.
.
 COMPARE 3cmp
 CONNECT
 a TYPE ana <1pid:con;
 b TYPE ana <2pid:con;
 o TYPE bin >out2;
 FORMULAS o = a >= b;
 STOP 3cmp
.
.
END

The corresponding example in graphic format:

Logics
Logics are defined in much the same way as calculation and comparison, but the type of the
inputs and outputs is bin.

The following logical operators are available for creating logics:

� OR logic or

� XOR logic exclusive or

� AND logic and

� NOT negation

� SR(s,r,i) and RS(r,s,i) SR and RS flip−flops

Logic operations can be grouped by parentheses.

Like calculation and comparison, logics are defined as a part of the function block list of a
configuration module.

FUNCTIONAL_PART
.
.
 LOGIC 1logic
 CONNECT
 a TYPE bin <pr:507.102.I1:m;
 b TYPE bin <2pid:ma;
 c TYPE bin <in1;
 o TYPE bin >out1;
 FORMULAS o = a AND (b OR c);
 STOP 1logic
.
.
.
END

The corresponding example in graphic format:

42 Automation Language

Rev. 2

5.3 Internal Connections in a Module

Data transfer inside a module is based on connection. Connection is established when two or
more connection points refer to the same data point. The connection point and the associated
data point, or part of data point separated with an index or specifier, must be of the same type.

Connections between function blocks can be made by

� defining a local data point and connecting the connection points of function block to
it, or

� directly at a connection point of a function block by writing here the function block
to be connected and its connection point. In this case, the connection is made
through an automatically generated data point that is invisible to the user. If a value
is written at the connection, a connection to a data point is generated, and the data
point is initialized with this value.

These methods are illustrated by the following two examples.

Example 1: Connection via a separately defined local data point

REPRESENTATION_PART
.
.
 LOCALS
 P1 TYPE ana;
.
.
FUNCTIONAL_PART
 1not
 in< −
 out> P1
 ;
 2pls
 cntrl< P1
 pout> −
 ;
.
.

Application Program Written in the Automation Language 43

Rev. 2

Example 2: Direct connection between the connection points of function blocks

FUNCTIONAL_PART
 1not
 in< −
 out> −
 ;
 2pls
 cntrl< 1not:out
 pout> −
 ;
 .
 .

These examples primarily refer to the list format design. Only the method shown in Example
2 is used in graphic design.

Correspondingly, connections between function blocks and ports are illustrated by the fol-
lowing examples:

Example 3: Connection is made directly between a port and a function block. The function
block to be connected and its connection point are indicated in the presentation of the interfa-
ce port.

(The function block member to
be connected is specified in the
presentation of the interface port)

REPRESENTATION_PART
.
.
 INTERFACE
 out1 TYPE ana< 1hys:out;
.
.
FUNCTIONAL_PART
 1hys
 in< −
 out> −
 ;

44 Automation Language

Rev. 2

Example 4: Connection is made directly between the port and the function block. The interfa-
ce port to be connected is written at the connection point of the function block.

(The interface port to be
connected is defined at the
function block connection point)

REPRESENTATION_PART
.
.
 INTERFACE
 out1 TYPE ana< −;
.
.
FUNCTIONAL_PART
 1hys
 in< −
 out> out1
 ;

The compiler tool of the configuration software converts the connections to mode 4.

When a connection is made to a connection point to which another connection point has been
connected, it is possible to use the path to the other connection point. The path consists of the
function block identifier and a specifier indicating the connection point. The identifier path
enables connection to connection points in a function block that have not yet been defined;
the actual connection is made later when defining the function block.

In the following examples, the same connection is made in three different ways by means of
an identifier path.

Mode 1

defines

.

.
 1hys
 out> 2lim:in
 ;
 2lim
 in< −
 ;
.
.

Application Program Written in the Automation Language 45

Rev. 2

Mode 2

defines

.
 1hys
 out> −
 ;
 2lim
 in< 1hys:out
 ;
.
.

The compiler tool of the configuration software converts the connections to mode 2 (not in
the case of calc, cmp or logic function blocks, because connection to their members cannot be
made from outside the function block).

Mode 3

both define

.

.
 1hys
 out> 2lim:in
 ;
 2lim
 in< 1hys:out
 ;
.
.

46 Automation Language

Rev. 2

In the case of a structured signal, it is possible to retrieve either the entire signal or its mem-
ber. A member can be accessed by adding a specifier to the identifier of the signal to be con-
nected.

Following is an example of a data point specifier used for extracting fault bits from an ana
type signal:

(ana)

(fails)

Figure 15 Example of a connection point specifier

The output signal of the PID controller 1pid is of the type ana, and contains the fault data f and
the signal value a. To extract the fault bits from the ana type signal the signal is added with the
fault data identifier f as follows: 1pid:con:f.

The corresponding part of the module in list form

FUNCTIONAL_PART
.
.
.

 2fbor
 fainp1< 1pid:con:f
.
.
.

A signal specifier is usually added to the respective input of the function block that uses the
signal.

5.4 Communication Between Modules
Communication between modules occurs through a pair consisting of a port and external data
point. When a module needs data from another module, it presents the external data point
where the data is to be copied from the other module through its own port. The identifier of
the external data point defines the module from which the data will be copied, the port
through which the data will be copied, and the data that will be copied.

To transfer all data of a certain connection point of a function block to a module port, the port
can be defined as a block tied to this function block. Now all connection points of this func-
tion block can be accessed via the defined block.

As we noted, communication between modules is based on copying data. If the data re-
quested from a module is structured and thus consists of several members, other modules can
request the following parts of this structured data:

1. Entire data, i.e. all members
2. Named member
3. A group of selected members with a specific viewpoint (control room)

Application Program Written in the Automation Language 47

Rev. 2

5.4.1 Using a Direct Access Port in Communication

The following figure (Figure 16) shows how two modules can communicate with each other
using a direct access port and an external data point.

In module pr:50−QC−136.F, the entire PID controller is connected to the direct access port
pr:50−QC−136. Now all members of the controller are accessible to other modules through
their own external data points (e.g external data points pr:50−QC−136:me and
pr:50−QC−136:sp1 in module pr:50−QC−222.F).

module pr:50−QC−136.F module pr:50−QC−222.F

Figure 16 Module communication from a direct access port to an external data
point

For communication to be possible, the list format module pr:50−QC−136.F must include the
following definitions:

REPRESENTATION_PART
 DIRECT_ACCESS
 BLOCK pr:50−QC−136

FUNCTIONAL_PART
 1pid is pr:50−QC−136
 .
 .

� The representation part defines a direct access port named pr:50−QC−136, which
refers to a function block.

� The functional part defines 1pid controller as a direct access port pr:50−QC−136.

48 Automation Language

Rev. 2

For communication to be possible, the list format module pr:50−QC−222.F must include the
following definitions:

REPRESENTATION_PART
 EXTERNALS
 pr:50−QC−136:me TYPE ana TRANSFER 192,10,0,0;
 pr:50−QC−136:sp1 TYPE ana TRANSFER 192,10,0,0;

FUNCTIONAL_PART
 1disa
 .
 .
 in1< pr:50−QC−136:me
 in2< pr:50−QC−136:sp1
 .
 .

� These presented external data points make it possible to transfer data external to the
module inside the module. The first external data point (pr:50−QC−136:me) is the
me member of the pid function block whose data is connected to input in1 in the
1disa function block. The second external data point (pr:50−QC−136:sp1) takes the
sp1 member of the pid function block and connects it to the in2 member of the 1disa
function block.

An external data point can also be used for transferring data to the other direction, to ports.
The direction of data transfer and other specifications concerning the data transfer are speci-
fied in the transfer definition of the external data point. A transfer may be prompted by a
change, or it can be cyclical or conditional.

This procedure generally applies only to sequences (in certain actions) and for writing data to
output cards.

Application Program Written in the Automation Language 49

Rev. 2

5.4.2 Using an Interface Port in Communication

The following example illustrates communication between modules using interface ports
and external data points.

module pr:50−XZ−136.F module pr:50−QC−136.F

Figure 17 Module communications from an interface port to an external data
point

For communication to be possible, the list format module pr:50−XZ−136.F must include the
following interface port:

REPRESENTATION_PART
 INTERFACE
 out1 TYPE ana <1disa:out
 MODSTAT TYPE ktstat < (1,1,0,1,1);

� The representation part presents the ana type interface port out1 and its connection
to the out member of the 1disa function block. In this way, member out in function
block 1disa is brought from inside the module to its interface and made accessible to
other modules.

The list format module pr:50−QC−136.F must have an external data point to enable the use of
the data from another module.

REPRESENTATION_PART
 EXTERNALS
 pr:50−XZ−136.F:out1 TYPE ana TRANSFER 192,10,0,0;

� The name of the external data point consists of the source configuration module’s
name pr:50−XZ−136.F extended with interface port name out1 separated by a co-
lon. In the data transfer definition the external data point is defined as a continuous
input.

Using external data inside a module is possible in the following way:

FUNCTIONAL_PART
 1pid
 .
 .
 .
 fcin< pr:50−XZ−136.F:out1
 .
 .
 .

50 Automation Language

Rev. 2

5.4.3 Using a Viewpoint in Communications

Modules can request structured data from other modules on the basis of viewpoints. Data re-
quested on the basis of a viewpoint consists only of specific members defined by the view-
point. Data requested on the basis of a viewpoint is transferred to the other module’s external
data point whose type is compatible with the viewpoint type. By using viewpoints, you can
extract the data actually needed in each particular situation. The control room is a typical user
of viewpoints.

The following example shows how data can be transferred from a process control server.

Example: Process control server function module pr:LI−700.F :

ADMINISTRATION_PART
 NAME: pr:LI−700.F
 TYPE: function
 STATUS: incomplete
 CREATOR: simon
 CREATED: 89−06−13 09:32
 MODIFIER: simon
 MODIFIED: 89−06−20 11:16
 DESTINATION: AP01
 EXECUTION: 400
 ORDINAL: 3
 DESCRIPTION: ”test module”

REPRESENTATION_PART
 EXTERNALS
 pr:LI−700.I:m TYPE ana TRANSFER 192,4,0,0;
 DIRECT_ACCESS
 BLOCK pr:LI−700
 INTERFACE
 MODSTAT TYPE ktstat < (1,1,0,1,1);

FUNCTIONAL_PART
 1am IS pr:LI−700
 hyst= (4)
 un= −
 av< pr:LI−700.I:m
 hh< −
 h< −
 l< −
 ll< −
 out> −
 hha> −
 ha> −
 la> −
 lla> −
 fa> −
 ;

END

Direct access port pr:LIC−700, which refers to the module’s only function block (1am), is
defined in the module. Other modules in Valmet DNA may request data from the module
pr:LI−700.F to their external data points in three different ways:

Mode 1:
Requesting data of the direct access port, in other words, function block members, using a
bundle port (the example has an am.opb type bundle port, so the following members can be
requested: av, hh, h, l, ll, out).

REPRESENTATION_PART
 EXTERNALS
 pr:LI-700 TYPE am.opb TRANSFER 192,4,0,0;
 .
 .

Application Program Written in the Automation Language 51

Rev. 2

Mode 2:
Requesting the named member out of the direct access port.

REPRESENTATION_PART
 EXTERNALS
 pr:LI-700:out TYPE ana TRANSFER 192,4,0,0;
 .
 .

Mode 3:
Requesting direct access port data using the viewpoint pgd (= graphic display viewpoint)
which selects members av and out of the am function block (other viewpoints of the am func-
tion block include pt and op).

REPRESENTATION_PART
 EXTERNALS
 pr:LI-700:pgd TYPE am_pgd TRANSFER 192,10,0,0;
 .
 .

5.5 An Example of the Structure, Connections and Communications of a
Configuration Module

In this example, we examine automation module XZ−108 (Figure 18).

Figure 18 Module XZ−108

52 Automation Language

Rev. 2

pr:L−193:av is an analog type (ana) external data point of the module, which is connected to
input in of the function block 1hys. Input hyst of the function block 1hys has been given the
value 0,0.5 in configuration phase. The function block output out is connected to the input a
of the function block 2cmp. The second input b of 2cmp is connected with the interface port
in1, which has been initialized to the value (0, 32.5).

All above−mentioned connection points of the function blocks are of the structured data type
ana. Type ana consists of members f, which is of the derived primitive type fails and a, which
is of the primitive type float.

Output o of 2cmp is further connected to the local data point P1. This local data point is con-
nected both to input b of the function block 3logic and input a of the function block 4logic.
The result of the comparison in block 2cmp is a logic value whose data type is bin (binary).
Type bin is a derived primitive type (see Appendix 1). As only data of the same type can be
connected, inputs a and b of the function blocks 3logic and 4logic are of the type bin. So are
the external data pr:KR−11.F:out1 connected to input a of the function block 3logic and the
external data pr:507.108:ma connected to input b of the block 4logic.

The results of the logic operations performed in the logic function blocks 3logic and 4logic −
which are of the type bin − are connected from the function block outputs o to the interface
ports pr:XZ−108.F:out1 and pr:XZ−108.F:out2 in the module interface. You should notice
that in list format design a direct reference to the connection points of logic, comparison and
calculation function blocks is not possible; the connection must be done through a local data
point.

The following types appear in the module under examination:

 ana
 MEMBERS
 f TYPE fails
 a TYPE float

 bin TYPE uns16

 hys
 MEMBERS
 in TYPE ana
 hyst TYPE ana
 out TYPE ana

LOCALS
 P1 TYPE bin;

INTERFACE
 in1 TYPE ana < (0,32.5);
 MOTSTAT TYPE ktstat < (1,1,0,1,1);

The number of inputs in comparison and logic function blocks and their data types are de-
fined in configuration.

In our example, the block data structures are of the following types (2cmp and 3logic):

COMPARE 2cmp
 CONNECT
 a TYPE ana < 1hys:out;
 b TYPE ana < in1;
 o TYPE bin > P1;
 FORMULAS
 o = a >= b;
 STOP 2cmp

LOGIC 3logic
 CONNECT
 a TYPE bin < pr:50−KR−11.F:out1;
 b TYPE bin < P1;
 o TYPE bin > out1;
 FORMULAS
 o = a AND b;
 STOP 3logic

Application Program Written in the Automation Language 53

Rev. 2

To illustrate the data types, the module can be shown in more detail as follows:

o
u
t
1

uns16
bin

f
a n a

a

a

b

4logic

o

uns16
bin

in

hyst

1hys

out f
a n a

a a

b

2cmp

o

a

b

3logic

o

uns16
bin

uns16
bin

uns16
bin

o
u
t
2

External
data points

Inter−
face

ports
Function blocks

Module XZ−108

0
a n a

5

in1

P1

0
a n a

0.5

Figure 19 Module XZ−108

54 Automation Language

Rev. 2

Function module pr:XZ−108.F is written in list form as follows:

ADMINISTRATION_PART
 NAME: pr:XZ−108.F
 TYPE: function
 STATUS: done
 CREATOR: tim
 CREATED: 89−01−02 08:36
 MODIFIER: tim
 MODIFIED: 89−01−02 08:55
 DESTINATION: AP02
 EXECUTION: 400
 ORDINAL: 3
 DESCRIPTION: ”EXAMPLE”

REPRESENTATION_PART
 EXTERNALS
 pr:L−193:av TYPE ana TRANSFER 192,4,0,0 ”Mixing tank level” ;
 pr:KR−11.F:out1 TYPE bin TRANSFER 192,4,0,0 ”Mixer group” ;
 pr:507.108:ma TYPE bin TRANSFER 192,4,0,0 ”Mix.tank on man.” ;

 LOCALS
 P1 TYPE bin;

 INTERFACE
 in1 TYPE ana < (0,32.5) ;
 out1 TYPE bin ”507.108”< − ;
 out2 TYPE bin ”507.108”< − ;
 MOTSTAT TYPE ktstat < (1,1,0,1,1);

FUNCTIONAL_PART
 1hys
 dchstv= (0)
 hyst< (0,0.5)
 in< pr:L−193:av
 out> −
 ;

 COMPARE 2cmp
 CONNECT
 a TYPE ana< 1hys:out;
 b TYPE ana< in1;
 o TYPE bin> P1;
 FORMULAS
 o = a >= b;
 STOP 2cmp

 LOGIC 3logic
 CONNECT
 a TYPE bin < pr:KR−11.F:out1;
 b TYPE bin < P1;
 o TYPE bin > out1;
 FORMULAS
 o = a AND b;
 STOP 3logic

 LOGIC 4logic
 CONNECT
 a TYPE bin < P1;
 b TYPE bin < pr:507.108:ma;
 o TYPE bin > out2;
 FORMULAS
 o = a AND b;
 STOP 4logic

END

The Automation Language’s Naming Conventions 55

Rev. 3

6 The Automation Language’s Naming
Conventions

6.1 General

The automation language used in Valmet DNA supports name−based communications. In
other words, data transfer in Valmet DNA relies on names.

There are no strict limitations to the names that can be given to modules, but it is more practi-
cal to use a consistent designation.

A consistent designation has many advantages:

� the engineer does not have to develop his own designations

� troubleshooting and maintenance are easier for personnel external to the project

6.2 Structure and Length of Module Name

Module names consist of the following components:

gd:A1:GRAPHICD12

directory identifier
control room identifier
tag part

Components are separated by colons (:).

The module name can be up to 63 characters long with all its components and separators.

An individual component between the colons can be up to 15 characters long.

6.3 Characters That Can Be Used in Module Name

Legal Characters

A − Z
a − z
0 − 9
’ . / _ + =

No national characters!

, − Components must not start with any of these characters!

Illegal Characters

control characters
space
tab character
;
” $ & () * ?
! % < >

−

: Component separator

56 Automation Language

Rev. 3

Characters That Are Not Recommended

The following characters can be used, but their use is not recommended:

@ [] ^ { } | \ ‘ ~

The reason why these characters are allowed is that in 7 bit character maps they are used as
national characters.

6.4 Directory Identifier in Module Name

In order to be able to unambiguously tell the document or module from the name of an auto-
mation, documentation or configuration module, directory identifiers are used to help distin-
guish module types.

In automation modules, the directory identifier is written in uppercase letters. In configurati-
on modules, it is written with lowercase letters. This makes automation modules and respec-
tive configuration modules unique in the engineering environment workspace.

6.4.1 Automation Modules

Directory identifiers are not used in the names of automation modules created with Function
Block CAD.

LIC−100

The directory identifier for automation modules created with Sequence CAD is SQ.

SQ:SEQ−100

The directory identifiers for automation modules created with Picture Designer are gd, rp and
mw.

gd:A1:GRAPHICD3 (graphic display)
rp:A1:RECIPED4 (recipe display)
mw:A1:MWINDOW5 (monitor window automation module)

6.4.2 Configuration Modules

Configuration modules are distinguished by directory identifiers and extensions (separated
by a period at the end of the name).

NOTE!
XX stands for control room identifier, example: A1 (see step 6.5 “Control Room Identifier in
Module Name”).

The Automation Language’s Naming Conventions 57

Rev. 3

Following is a list of directory identifiers and module types by application server types:

APPLICATION
SERVER

ID EXTENSION MODULE TYPE

PCS pr: .F function module

pr: .I input module

pr: .O output module

pr: − direct access port name

sq: .F function module, sequence

ph: − history module

ph:me: − controller history module

ph:spa: − controller history module

ph:pos: − controller history module

rp: .V recipe variation module

rp: .P recipe parameter module

rp: .C recipe calculation module

rp: .L recipe loading module

DIS xc: .F function module

xi: .IO input/output module

CIS ci: − function module

LIS li: − function module

SIS si: − function module

REP rs: .C report collection, calculation and con-
trol module

rs: .R report storing module

rs: .P report printing module

ALS al:XX: .F event module

al:XX: − direct access port name

sn:XX: − system module

OPS ce:XX: − tag module

cp:XX: − direct access port for tag module

od:XX: − operating display module

gd:XX: − graphic display module

tr:XX: − trend display module

rp:XX: − recipe display module

sd:XX: .st step display module

sd:XX: .x step module

mw:XX: − monitor window module

td:XX: − test display module

sn:XX: − system module

The directory identifier of diagnostic sensors in Valmet DNA is di. The sensors are used in the
diagnostic event modules.

58 Automation Language

Rev. 3

6.5 Control Room Identifier in Module Name

The control room identifier is used in the names of modules in operation server and alarms
and events server.

The control room identifier guarantees that the module name is unique in a network of many
control rooms and buses. The control room identifier is a two character code where the first
character must be a letter and the second a number. Legal characters are letters A...Z and
numbers 0...9.

1. character = process area (design area) identifier A...Z
2. character = control room number 1...9

Example: gd:A1:GRAPHICD3

6.6 Tag Part in Module Name

Structure of the Tag Part

The tag part of a module name consists either of a tag identifier and device tag identifier with
their extensions or of a name defined by the application engineer.

Example:

LC:LIC−100 (tag)

pr:LT−100.I (device tag + extension)

gd:A1:GRAPHICD3 (display name)

Extension of the Tag Part

In configuration modules, the tag part is often followed by an extension, which is separated
from the actual tag identifier with a period.

Example:

pr:LIC−100.F (function module)

pr:LT−100.I (input module)

pr:LV−100.O (output module)

Extensions F, I and O are commonly used. They may also include a number to indicate, for
example, the number of the output:

Example:

pr:LV−100.O2

As the example shows, when a device tag is used, the extension is not necessary to make the
name unique. Still there are the following reasons why to use the extensions:

� Using extensions enables you, for example, to inquire all input module names from
the repository. Without the extension or other unique marker, the inquiry would not
succeed.

� The check tool of the engineering server uses extensions for calculating loading es-
timates and checking for duplicate card addresses in different I/O modules.

Extension may also come automatically to a tag part of configuration modules when engi-
neering tools are used (see step 6.10 “Modules by Tools”).

The Automation Language’s Naming Conventions 59

Rev. 3

Things to Be Considered in Tag Part

Tag and device tag identifiers are written in UPPERCASE LETTERS.

The tag identifier should contain possible process area or department code to make the name
unique in the entire Valmet DNA. Think about the future!

Take care not to make the tag part longer than 15 characters. If you run out of space, remove
some not so significant characters from the tag identifier:

Example:

LIC−100 −> LC−100
PIA−123 −> P−123

For a control room tag identifier, you can use the whole tag without process area or depart-
ment code.

6.7 Designation of Display Modules

Display modules are named by display type. The name will be preceded by the directory
identifier and control room identifier yy:XX. The directory identifier is written in lowercase
letters. The directory identifier is derived from the display type as follows:

gd graphic display

tr trend display

rp recipe display

sd step display

od operation display

td test display

mw monitor window

In automation modules, the directory identifiers are written in uppercase letters.

6.8 Designation of System Modules

The directory identifier for system modules is either sn or an identifier derived from the dis-
play type. Following is a list of system modules, their destinations and types:

Name Destination Type

sn:XX:clomod OPS,ALS clock

sn:XX:hmod OPS hierarchy

sn:XX:syscrsX OPS activity

sn:XX:keycnfX OPS keyboard

sn:XX:pltmod OPS palette

sn:XX:menumod OPS menu

sn:XX:odheader OPS path

sn:XX:mdheader OPS header

sn:XX:login OPS user_id

60 Automation Language

Rev. 3

Name TypeDestination

td:XX:TDWHITE OPS test display

td:XX:TDGRID OPS test display

td:XX:TDBLACK OPS test display

td:XX:TDCARPET OPS test display

td:XX:TDGREYSCA OPS test display

td:XX:TDCS OPS test display

sn:XX:ALMLIST.F ALS alarm list

sn:XX:MSGLIST.F ALS message list

sn:XX:AREA.F ALS area definitions

sn:XX:HORN.F ALS horn definitions

sn:XX:printcon ALS printer definitions

sn:XX:ALMPRINT.F ALS printer control

6.9 Designation of Modules Produced by Operation Server

In testing and troubleshooting, it is useful to know the designation of the modules contained
in Valmet DNA itself. This has been necessitated by user−configurable trends.

The operation server produces history modules to Valmet DNA.

History modules are generated as a result of trend display selection operations.

The operation server uses base modules to ”generate” the modules.

6.9.1 Designation of History Modules

History module name consists of the following components:

Example:

pt:A1:0.125h:me:FIC−100

directory identifier
control room identifier
time scale
signal identifier
tag part

History modules are located at the application server indicated in the tag.

Scaling modules are located at the application server indicated in the tag.

The Automation Language’s Naming Conventions 61

Rev. 3

6.9.2 Designation of Base Modules

Base modules are display or function module bases residing in the operation server. They are
used for internal Valmet DNA configuration changes.

Example:

model:function:history:ana:0.5h:XXXX ...

directory identifier
module type
module type specifier
signal specifier type
time scale
module type specific specifiers

Base modules are part of the operation server product. Changes into them are made in the
development department.

6.10 Modules by Tools

Following is a list of automation modules and configuration modules generated from them,
sorted by tool.

NOTE!
XX stands for control room identifier, YYYY for application server identifier and Z for bus
identifier.

TOOL NAME OF GENERATED
MODULE/DOCUMENT

−

Picture
Designer

gd:XX:GRAPHICD3 graphic display module

rp:XX:RECIPED4 recipe display module

mw:XX:MWINDOW5 monitor window module

62 Automation Language

Rev. 3

TOOL −NAME OF GENERATED
MODULE/DOCUMENT

Function
Block CAD

LIC−100 automation module/function diagram
document

pr:LIC−100.F function module

pr:LT−100.I input module

pr:LV−100.O output module

ce:XX:LIC−100 tag module

od:XX:LIC−100 operating display module

al:XX:LIC−100.F event module

RE1_V automation module/recipe variation
document

rp:RE1.V recipe variation module

RE1_P automation module/recipe parameter
document

rp:RE1.P recipe parameter module

RE1_C automation module/recipe calculation
document

rp:RE1.C recipe calculation module

RE1_L automation module/recipe loading doc-
ument

rp:RE1.L recipe loading module

REP1_C automation module/report collection,
calculation and control document

rs:REP1.C report collection, calculation and con-
trol module

REP1_R automation module/report storing docu-
ment

rs:REP1.R report storing module

Sequence
CAD

SQ:SEQ−100 automation module/sequence diagram
document

sq:SEQ−100.F function module, sequence

ce:XX:SEQ−100 tag module, main sequence

ce:XX:SEQ−100.L tag module, subsequence

od:XX:SEQ−100 operating module

al:XX:SEQ−100.F event module, main sequence

al:XX:SEQ−100.L.F event module, subsequence

sd:XX:SEQ−100.st step display module

sd:XX:SEQ−100.x step module

Control
Diagram CAD

CD:HEADBOX document module/control diagram doc-
ument

Hardware
CAD

HW:50RK001 document module/hardware drawing
document

The Automation Language’s Naming Conventions 63

Rev. 3

6.11 Module Destination Data

In automation modules and configuration modules, the destination data is used to indicate in
which Valmet DNA application server the configuration modules are located.

The destination data reserves four characters; the first character must be a letter. Legal char-
acters in destination data are letters A...Z and numbers 0...9.

6.11.1 Structure of the Destination Data

1. character = process area (design area) identifier A..Z
2. character = application server identifier A...Z or control room number 1...9
3. character = application server number 0...9 or control room identifier A...Z
4. character = application server number 0...9

Application Server Identifier Letters

Application server name Abbrev. Identifier Example

Process Control Server PCS P AP01

Report Server REP E AE01

Alarms and Events Server ALS A A1A1,A1

Operation Server OPS O A1O1,A1O,A1

Diagnostics Server DIA D AD01

Backup Server BU B AB01

Damatic Interface Server DIS I AI01

Computer Interface Server CIS C AC01

Logic Interface Server LIS L AL01

Sensor Interface Server SIS S AS01

Router Server RTS X AX01

Designation of Application Packages in Operation Server and Alarms
and Events Server

In the case of a control room, the destination may instead of one application server (A1O1)
also refer to a group of several application servers (A1O). In this case, all modules marked
with this destination identifier go to all application servers belonging to this group.

In operation server and alarms and events server application packages to be sent to applica-
tion server groups are named as follows:

� picture modules, example: A1O

the modules are loaded to all operation servers of control room A1

� tag modules, example: A1

tag modules are loaded to all operation servers of control room A1 and to alarms and
events servers

64 Automation Language

Rev. 4

7 Fault Bit Conventions
The data created in Valmet DNA and provided with a connection that makes it possible to
change data through application configuration, generally consist of two bundled members:
the base type data and fault bits.

This chapter explains how fault bits should be treated.

7.1 Meanings of Fault Bits

Fault bits indicate faults detected in the signal processing chain — right from the transmitter.
They are able to indicate several faults at the same time. Following is a list and short descrip-
tion of fault bits:

ext (2)

External fault:
fault in the transmitter or signal wire.

ovf (4)

Data overflow:
input signal out of the permissible signal range.

dis (8)

Control disabled:
signal cannot be controlled by Valmet DNA.

inv (16)

Invalid data:
signal value is not based on any measurement.

old (32)

Old data:
signal value has been frozen.

der (64)

Fault on derived data:
one or more of the input signals of a derived signal is faulty.

sex (128)

Source exceptional:
the data has been produced by exceptional data source, e.g. data is simulated.

The values of the fault bits in decimal system are presented in brackets.

7.2 What Different Fault Bits Indicate

On one hand, fault bits indicate the validity of the data, on the other hand, they indicate ex-
ceptional conditions in the signal path — from its source to the user.

Some fault bits are interpreted as faults while others are only informative. The decision
between a fault or a ”for your information” situation is usually made case by case when using
the data.

In general, only real faults require taking some remedial steps.

Fault Bit Conventions 65

Rev. 4

7.2.1 ext − External Fault

Common cause:

� Connection wires broken or short−circuited, wrong transmitter tuning or faulty
transmitter.

� A fault outside Valmet DNA distorts the message read in Valmet DNA and prevents
Valmet DNA from controlling the device.

If the fault affects the measured variable directly, FBC reacts by freezing the value to the val-
ue that preceded the fault, and sets the old fault bit to indicate this condition. If the external
fault does not directly affect the measured variable, FBC does not freeze the measurement.
Conclusions on the effect of the fault on the variable are made by the I/O unit and FBC.

In the case of a read−back of an output, FBC will not freeze the value but uses the value that
the I/O unit tried to write in the output. Because of the external fault, the real output value is
not known.

7.2.2 ovf − Data Overflow

Common cause:

� Measured variable out of the tuned transmitter range.

Is not generally considered a fault.

The signal read from the transmitter is under 0 % or over 100 % of the set signal range (e.g.
under 4 mA or over 20 mA). This makes the signal inaccurate and its exact value cannot be
measured, because the input unit does not measure values outside the signal range, and it is
not known how much the value differs from the actual signal value. The signal value is set to
low or high limit of the signal range, depending on whether the range was exceeded or under-
cut — if it has not been frozen for some other reason.

Is also used when time stamp of a binary signal is inaccurate.

This fault bit requires remedial steps only if it is necessary because of an inaccurate reading.

7.2.3 dis − Control Disabled

Common cause:

� Output has been set to local mode in the output unit or output has been set to a state in
FBC where the data written from Valmet DNA is not sent to the field.

� The output cannot be controlled from Valmet DNA in the normal way, because the
signal path is cut in the FBC (disabled control) or in the output (local control).

The fault bit requires remedial steps if it is necessary because of an unabled control.

7.2.4 inv − Invalid Data

Common cause:

� After starting the configuration, the value cannot be read or it cannot be accepted.

Because no acceptable signal value could be read, the signal retains its configured default
value. Or the sender wants to tell the user of the data that the signal should not be used.

In general, the fault bit causes the value to be rejected.

66 Automation Language

Rev. 4

7.2.5 old − Old Data

The current value of the signal is not known for sure, because it is not updated with the real
value. To what extent such signal can be used is determined by the situation preceding the
setting of the old fault bit: whether the last updated value was valid or invalid and whether the
value has been updated at all.

The fault bit requires remedial action only if an update failure or an invalid data is a problem.

7.2.6 der − Fault on Derived Data

The signal is derived from other signals, and in some of the input signals the fault bit inv, old
or der is set.

7.2.7 sex − Source Exceptional

Measurement

Value is not read from the transmitter but the signal path is cut in the FBC. The value is the
value given by the input simulation.

Output

The read−back value does not come from the I/O unit, but the last written output value is used
instead.

It is possible to set the input/output to simulation mode also in other units besides the FBC.

Not generally interpreted as a fault.

The fault bit requires remedial action only if the cut signal path is a problem.

When a measurement is simulated, the fault bits are also simulated. In other words, the simu-
lation point transmits the fault bits defined by the user. In a simulated measurements, no con-
clusions on the validity of the signal can be made beyond the simulation point.

7.3 Signal Alarms from Fault Bits

Some data types are provided with signal alarms. The alarm is set when the signal is faulty.

The signal alarm can be used in the application to tell the operator that a fault has been de-
tected in the connection of the signal.

As a rule, the signal alarm is given if any of the fault bits ext, inv, old or der is set. ovf, dis and
sex do not set the signal alarm.

7.4 Some Notes to Be Noted in Using Fault Bits

If the fault bit inv is set alone, the signal value will not be shown on the control room monitor.
If some other bit is set besides the inv, the value will be shown.

Fault Bit Conventions 67

Rev. 4

7.5 On Applying Fault Bit Conventions

7.5.1 Initial Values of Types

The initial value given by the type is applied if the engineer has not initialized the module and
he has not connected the data, or the connection does not work.

7.5.2 Initial Values in Modules

The initial values for modules will remain set, if the application engineer has not connected
the data to a point outside the module.

If the data is connected, the fault bits defined by the engineer only last until the connection is
made with some exceptions that are listed in the following step.

If the data includes fault bits, the application engineer must always define both the value and
the fault bits.

7.5.3 Data to Be Connected

In the case of data that the application engineer has connected outside the module, Valmet
DNA works as follows:

If the connection cannot be made when the module is started, the fault bit old is set. Other
fault bits remain as the application engineer set them, or if he did not initialize them, they will
remain as they were set in the type defaults.

When the connection is made, the fault bits will be updated by the connected data.

If the connection breaks, the fault bit old will be set. Other fault bits remain as they were when
the connection was still open.

68 Automation Language

Rev. 4

Appendix 1 1

Rev. 2

Primitive Types

BASIC TYPES

TYPE FUNCTION RANGE SIZE IN
BYTES

char unsigned character variable character 1

int8 signed integer −128...+127 1

int16 signed integer −32768...+32767 2

int32 signed integer −2147483648...
+2147483647

4

uns8 unsigned integer 0...255 1

uns16 unsigned integer 0...65535 2

uns32 unsigned integer 0...4294967295 4

bool8 Boolean variable. Variable value is
false if all bits of the variable are
false. Value is true if any bit of the
variable is true.

true/false 1

bool16 Boolean variable. Variable value is
false if all bits of the variable are
false. Value is true if any bit of the
variable is true.

true/false 2

float single precision floating point num-
ber
By default, NaN values in PCS
function blocks are replaced with
zeros.

MIN− = −1.18*10−38

MIN+ = +1.18*10−38

MAX− = −3.4*1038

MAX+ = +3.4*1038

4

2 Primitive Types

Rev. 2

DERIVED TYPES

fails, type uns16
� The type fails contains 16 bits (b0−b15), 16 separate items of logical data, that can

be referred to by using the conventions of the automation language.

� The symbolic names and functions of the bits are as follows:

BIT NAME FUNCTION

b0 b � 0 (value of variable in derived type bin)

b1 ext transmitter supply failure or line fault (external)

b2 ovf inpu signal beyond limits (overflow)

b3 dis signal cannot be controlled (control disabled)

b4 inv unreliable data (invalid)

b5 old data not updated (old)

b6 der derived fault (derived)

b7 sex source exceptional

b8 (not in use)

b9 −

b10 −

b11 −

b12 −

b13 −

b14 −

b15 −

� E.g.: If the variable ”pressure” is of structured type ”ana”, its fault bit ”pres-
sure:f:inv” is invalid data.

bin, type uns16
� The type bin contains 16 bits, 16 separate items of logical data. Bit b0 is the value of

type bin. When referring to a variable of the type bin in the automation language,
you refer to this value. Bits b1−b15 are fault data of type bin; this data is defined in
connection with the type fails.

� Automation language allows the handling of fault data in separate logical entities.
For instance, if variable lim is of the type bin, ”lim:b” is its value and ”lim:der” is its
fault bit (derived value).

Appendix 2 1

Rev. 1

Common Structured Types

Type Function Members Function of members Type of members

ana analog signal f
a

fault bits
value

fails
float

ints short integer f
s

fault bits
value

fails
int16

intl long integer f
l

fault bits
value

fails
int32

time time and date hundus
tenms
sec
min
hour
wday
day
month
year
vers

100 microseconds
10 milliseconds
seconds
minutes
hours
day of week
day
month
year
time version (b7 − b5)
and time zone (b4 − b0)

uns8
uns8
uns8
uns8
uns8
uns8
uns8
uns8
uns8
uns8

bo binary output bv
pw

value of binary output
pulse width of binary
output

bin
uns16

binev time stamped binary
signal

binstat
bintime

value
time stamp

bin
time

anaev time stamped analog
signal

anastat
anatime

value
time stamp

ana
time

intsev time stamped short
integer

intsstat
intstime

value
time stamp

ints
time

intlev time stamped long
integer

intlstat
intltime

value
time stamp

intl
time

2 Common Structured Types

Rev. 1

	1 Introduction
	2 Automation Application
	3 Concepts of the Automation Language
	3.1 Modules
	3.1.1 Automation Modules

	3.2 Document Modules
	3.3 Configuration Modules
	3.4 Type Modules i.e. Types
	3.4.1 Data Types
	3.4.2 Function Block Types i.e. Function Blocks
	3.4.3 Bundle Types

	4 Application Program Elements
	4.1 Data Points
	4.1.1 Local Data Points
	4.1.2 External Data Points

	4.2 Ports
	4.2.1 Direct Access Port
	4.2.2 Interface Port

	4.3 Function Blocks
	4.3.1 Configuration Parameters
	hyst
	un

	4.3.2 Connection Parameters
	av
	hh
	h
	l
	ll
	out
	hha
	ha
	la
	lla
	fa

	5 Application Program Written in the Automation Language
	5.1 The Structure of an Automation Module
	5.2 The Structure of a Configuration Module
	5.2.1 Administration Part
	5.2.2 Representation Part
	5.2.3 Functional Part

	5.3 Internal Connections in a Module
	5.4 Communication Between Modules
	5.4.1 Using a Direct Access Port in Communication
	5.4.2 Using an Interface Port in Communication
	5.4.3 Using a Viewpoint in Communications

	5.5 An Example of the Structure, Connections and Communications of a Configuration Module

	6 The Automation Language's Naming Conventions
	6.1 General
	6.2 Structure and Length of Module Name
	6.3 Characters That Can Be Used in Module Name
	6.4 Directory Identifier in Module Name
	6.4.1 Automation Modules
	6.4.2 Configuration Modules

	6.5 Control Room Identifier in Module Name
	6.6 Tag Part in Module Name
	6.7 Designation of Display Modules
	6.8 Designation of System Modules
	6.9 Designation of Modules Produced by Operation Server
	6.9.1 Designation of History Modules
	6.9.2 Designation of Base Modules

	6.10 Modules by Tools
	6.11 Module Destination Data
	6.11.1 Structure of the Destination Data

	7 Fault Bit Conventions
	7.1 Meanings of Fault Bits
	7.2 What Different Fault Bits Indicate
	7.2.1 ext - External Fault
	7.2.2 ovf - Data Overflow
	7.2.3 dis - Control Disabled
	7.2.4 inv - Invalid Data
	7.2.5 old - Old Data
	7.2.6 der - Fault on Derived Data
	7.2.7 sex - Source Exceptional

	7.3 Signal Alarms from Fault Bits
	7.4 Some Notes to Be Noted in Using Fault Bits
	7.5 On Applying Fault Bit Conventions
	7.5.1 Initial Values of Types
	7.5.2 Initial Values in Modules
	7.5.3 Data to Be Connected

	Appendix 1 Primitive Types
	Appendix 2 Common Structured Types

